
Data Structures for Disjoint Sets

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Dynamic Sets

• Sets are fundamental for mathematics but
also for computer science.

• In computer science, we usually study
dynamic sets i.e., sets that can grow, shrink or
otherwise change over time.

• The data structures we have presented so far
in this course offer us ways to represent finite,
dynamic sets and manipulate them on a
computer.

Data Structures and Programming
Techniques

2

Dynamic Sets and Symbol Tables

• Many of the data structures we have so far
presented for symbol tables can be used to
implement a dynamic set (e.g., a linked list, a
hash table, a (2,4) tree etc.).

Data Structures and Programming
Techniques

3

Disjoint Sets

• Some applications involve grouping 𝑛 distinct
elements into a collection of disjoint sets
(ξένα σύνολα).

• Important operations in this case are to
construct a set, to find which set a given
element belongs to, and to unite two sets.

Data Structures and Programming
Techniques

4

Definitions

• A disjoint-set data structure maintains a
collection 𝑆 = { 𝑆1, 𝑆2, ⋯ , 𝑆𝑛} of disjoint
dynamic sets.

• Each set is identified by a representative
(αντιπρόσωπο), which is some member of the
set.

• The disjoint sets might form a partition
(διαμέριση) of a universe set 𝑈 (i.e., their
union is the set 𝑈).

Data Structures and Programming
Techniques

5

Definitions (cont’d)

• The disjoint-set data structure supports the following
operations:
– MAKE-SET(𝒙): It creates a new set whose only member (and thus

representative) is pointed to by 𝑥. Since the sets are disjoint, we
require that 𝑥 not already be in any of the existing sets.

– UNION(𝒙, 𝒚): It unites the dynamic sets that contain 𝑥 and 𝑦, say
𝑆𝑥 and 𝑆𝑦, into a new set that is the union of these two sets.
One of the 𝑆𝑥 and 𝑆𝑦 give its name to the new set and the other
set is “destroyed” by removing it from the collection 𝑆. The two
sets are assumed to be disjoint prior to the operation. The
representative of the resulting set is some member of 𝑆𝑥 ∪ 𝑆𝑦
(usually the representative of the set that gave its name to the
union).

– FIND-SET(𝒙) returns a pointer to the representative of the unique
set containing 𝑥.

Data Structures and Programming
Techniques

6

Determining the Connected
Components of an Undirected Graph

• One of the many applications of disjoint-set data
structures is determining the connected
components (συνεκτικές συνιστώσες) of an
undirected graph.

• The implementation based on disjoint-sets that
we will present here is appropriate when the
edges of the graph are not static e.g., when edges
are added dynamically and we need to maintain
the connected components as each edge is
added.

Data Structures and Programming
Techniques

7

Example Graph

Data Structures and Programming
Techniques

8

a b

c d

e

g

f h

i

j

Computing the Connected
Components of an Undirected Graph

• The following procedure CONNECTED-COMPONENTS
uses the disjoint-set operations to compute the
connected components of an undirected graph.

CONNECTED-COMPONENTS(𝐺)
for each vertex 𝑣 ∈ 𝑉 𝐺

do MAKE-SET(𝑣)
for each edge 𝑢, 𝑣 ∈ 𝐸 𝐺

do if FIND-SET(𝑢)≠FIND-SET(𝑣)
then UNION(𝑢, 𝑣)

Data Structures and Programming
Techniques

9

Computing the Connected
Components (cont’d)

• Once CONNECTED-COMPONENTS has been run as a
preprocessing step, the procedure SAME-
COMPONENT given below answers queries about
whether two vertices are in the same connected
component.

SAME-COMPONENT(𝑢, 𝑣)
if FIND-SET(𝑢)=FIND-SET(𝑣)

then return TRUE
else return FALSE

Data Structures and Programming
Techniques

10

Example Graph

Data Structures and Programming
Techniques

11

a b

c d

e

g

f h

i

j

The Collection of Disjoint Sets After
Each Edge is Processed

Edge
processed

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕 𝑺𝟖 𝑺𝟗 𝑺𝟏𝟎

initial sets {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b,d) {a} {b,d} {c} {e} {f} {g} {h} {i} {j}

(e,g) {a} {b,d} {c} {e,g} {f} {h} {i} {j}

(a,c) {a,c} {b,d} {e,g} {f} {h} {i} {j}

(h,i) {a,c} {b,d} {e,g} {f} {h,i} {j}

(a,b) {a,b,c,d} {e,g} {f} {h,i} {j}

(e,f) {a,b,c,d} {e,f,g} {h,i} {j}

(b,c) {a,b,c,d} {e,f,g} {h,i} {j}

Data Structures and Programming
Techniques

12

Minimum Spanning Trees

• Another application of the disjoint set
operations that we will see is Kruskal’s
algorithm for computing the minimum
spanning tree of a graph.

• We will see this algorithm in the next lecture.

Data Structures and Programming
Techniques

13

Maintaining Equivalence Relations

• Another application of disjoint-set data
structures is to maintain equivalence
relations.

• Definition. An equivalence relation on a set 𝑆
is relation ≡ with the following properties:
– Reflexivity: for all 𝑎 ∈ 𝑆, we have 𝑎 ≡ 𝑎.

– Symmetry: for all 𝑎, 𝑏 ∈ 𝑆, if 𝑎 ≡ 𝑏 then 𝑏 ≡ 𝑎.

– Transitivity: for all 𝑎, 𝑏, 𝑐 ∈ 𝑆, if 𝑎 ≡ 𝑏 and 𝑏 ≡
𝑐 then 𝑎 ≡ 𝑐 .

Data Structures and Programming
Techniques

14

Examples of Equivalence Relations

• Equality in some set 𝑆.

• Connectivity of vertices in an undirected
graph.

Data Structures and Programming
Techniques

15

Examples of Equivalence Relations
(cont’d)

• Equivalent type definitions in programming languages. For
example, consider the following type definitions in C:
struct A {

int a;

int b;

};

typedef A B;

typedef A C;

typedef A D;

• The types A, B, C and D are equivalent in the sense
that variables of one type can be assigned to variables of
the other types without requiring any casting.

Data Structures and Programming
Techniques

16

Equivalent Classes

• If a set 𝑆 has an equivalence relation defined
on it, then the set 𝑆 can be partitioned into
disjoint subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑛 called
equivalence classes whose union is 𝑆.

• Each subset 𝑆𝑖 consists of equivalent members
of 𝑆. That is, 𝑎 ≡ 𝑏 for all 𝑎 and 𝑏 in 𝑆𝑖, and
𝑎 ≢ 𝑏 if 𝑎 and 𝑏 are in different subsets.

Data Structures and Programming
Techniques

17

Example

• Let us consider the set 𝑆 = {0,1, 2, … , 6}.

• Let us also consider an equivalence relation ≡
on 𝑆 defined by the following equivalences:

0 ≡ 2, 5 ≡ 6, 3 ≡ 4, 0 ≡ 4, 0 ≡ 3

• Note that the relation 0 ≡ 3 follows from the
others given the definition of an equivalence
relation.

Data Structures and Programming
Techniques

18

The Equivalence Problem

• The equivalence problem can be formulated
as follows.

• We are given a set 𝑆 and a sequence of
statements of the form 𝑎 ≡ 𝑏.

• We are to process the statements in order in
such a way that, at any time, we are able to
determine in which equivalence class a given
element of 𝑆 belongs.

Data Structures and Programming
Techniques

19

The Equivalence Problem (cont’d)

• We can solve the equivalence problem by
starting with each element in a different
named set.

• When we process a statement 𝑎 ≡ 𝑏, we call
FIND-SET(𝑎) and FIND-SET(𝑏).

• If these two calls return different sets then we
call UNION to unite these sets. If they return
the same set then this statement follows from
the other statements and can be discarded.

Data Structures and Programming
Techniques

20

Example (cont’d)

• We start with each element of 𝑆 in a set:
0 1 2 3 4 5 6

• As the given equivalence relations are processed,
these sets are modified as follows:
0 ≡ 2 0, 2 1 3 4 5 6
5 ≡ 6 0, 2 1 3 4 5, 6
3 ≡ 4 0, 2 1 3, 4 5, 6
0 ≡ 4 0, 2, 3, 4 1 5, 6
0 ≡ 3 follows from the other statements and is

discarded

Data Structures and Programming
Techniques

21

Example (cont’d)

• Therefore, the equivalent classes of 𝑆 are the
subsets 0, 2, 3, 4 , 1 and {5, 6}.

Data Structures and Programming
Techniques

22

Implementation in C

• Let us assume that the sets will have positive integers in the range 0 to N-
1 as their members.

• The simplest way to implement in C the disjoint sets data structure is to
use an array id[N] of integers that take values in the range 0 to N-1.
This array will be used to keep track of the representative of each set but
also the members of each set.

• Initially, we set id[i]=i, for each i between 0 and N-1. This is
equivalent to N MAKE-SET operations that create the initial versions of the
sets.

• To implement the UNION operation for the sets that contain integers p and
q, we scan the array id and change all the array elements that have the
value p to have the value q. In other words, q becomes the representative
of the union of the two sets.

• The implementation of the FIND-SET(p) simply returns the value of id[p].
• This algorithm is called quick-find.

Data Structures and Programming
Techniques

23

Implementation in C (cont’d)

• The program on the next slide initializes the
array id, and then reads pairs of integers
(p,q) and performs the operation
UNION(p,q) if p and q are not in the same set
yet.

• The program is an implementation of the
equivalence problem defined earlier.

Data Structures and Programming
Techniques

24

Implementation in C (cont’d)

#include <stdio.h>

#define N 10000

main()

{ int i, p, q, t, id[N];

for (i = 0; i < N; i++) id[i] = i;

while (scanf("%d %d", &p, &q) == 2)

{

if (id[p] == id[q]) continue;

for (t = id[p], i = 0; i < N; i++)

if (id[i] == t) id[i] = id[q];

printf("%d %d\n", p, q);

}

}

Data Structures and Programming
Techniques

25

Example

p q id[0] id[1] id[2] id[3] id[4] id[5] id[6]

0 1 2 3 4 5 6

0 2 2 1 2 3 4 5 6

5 6 2 1 2 3 4 6 6

3 4 2 1 2 4 4 6 6

0 4 4 1 4 4 4 6 6

0 3 4 1 4 4 4 6 6

Data Structures and Programming
Techniques

26

Complexity Parameters for the
Disjoint-Set Data Structures

• We will analyze the running time of our data
structures in terms of two parameters:

– 𝑛, the number of objects, and

–𝑚, the number of pairs of input equivalent objects
to be processed.

Data Structures and Programming
Techniques

27

Proposition

• The quick-find algorithm has time complexity
𝑂(𝑛𝑚) where 𝑛 is the number of objects and
𝑚 is the number of input pairs of objects.

• Proof?

Data Structures and Programming
Techniques

28

Proof

• For each of the 𝑚 input pairs, we iterate the
for loop 𝑛 times.

Data Structures and Programming
Techniques

29

Linked-List Representation of Disjoint
Sets

• Another way to implement a disjoint-set data
structure is to represent each set by a linked list.

• The first object in each linked list serves as its
set’s representative. The remaining objects can
appear in the list in any order.

• Each object in the linked list contains a set
member, a pointer to the object containing the
next set member, and a pointer back to the
representative.

Data Structures and Programming
Techniques

30

The Structure of Each List Object

Data Structures and Programming
Techniques

31

Pointer Back to
Representative

Pointer to
Next Object

Set Member

Example: the Sets {c, h, e, b} and
{f, g, d}

Data Structures and Programming
Techniques

32

c h e b .

f g d .

The representatives of the two sets are c and f.

Implementation of MAKE-SET and
FIND-SET

• With the linked-list representation, both
MAKE-SET and FIND-SET are easy.

• To carry out MAKE-SET(𝑥), we create a new
linked list which has one object with set
element 𝑥.

• To carry out, FIND-SET(𝑥), we just return the
pointer from 𝑥 back to the representative.

Data Structures and Programming
Techniques

33

Implementation of UNION

• To perform UNION(𝑥, 𝑦), we can append 𝑥’s list
onto the end of 𝑦’s list.

• The representative of the new set is the
element that was originally the representative
of the set containing 𝑦.

• We should also update the pointer to the
representative for each object originally in 𝑥’s
list.

Data Structures and Programming
Techniques

34

The Weighted Union Heuristic

• In the above implementation of the UNION operation
we may be appending a longer list onto a shorter list,
and we must update the pointer to the representative
of each member of the longer list.

• If each representative also includes the length of the
list then we can always append the smaller list onto
the longer, with ties broken arbitrarily. This is called the
weighted union heuristic.

• The word heuristic is used in Computer Science to
mean “a rule of thumb” that allows us to improve an
algorithm.

Data Structures and Programming
Techniques

35

Implementation in C

• The implementation in C for the case where
sets are represented by linked lists is left as an
exercise.

Data Structures and Programming
Techniques

36

Complexity of Operations for the
Linked List Representation

• MAKE-SET and FIND-SET take 𝑂(1) time.
• UNION(𝑥, 𝑦) takes time 𝑂 𝑥 + 𝑦 where 𝑥 and 𝑦

denote the cardinalities of the sets that contain 𝑥 and 𝑦.
We need 𝑂(𝑦) time to reach the last object in 𝑦’s list to
make it point to the first object in 𝑥’s list. We also need
𝑂(𝑥) time to update all pointers to the representative in
𝑥’s list.

• If we keep a pointer to the last object in the list in each
representative then we do not need to scan 𝑦’s list, and we
only need 𝑂(𝑥) time to update all pointers to the
representative in 𝑥’s list.

• In the worst case, the complexity of UNION is 𝑂(𝑛) since the
cardinality of each set can be at most 𝑛.

Data Structures and Programming
Techniques

37

Disjoint-Set Forests

• There is another interesting implementation of
disjoint sets in which we represent sets by
directed rooted trees.

• Each node of a tree represents one set member
and each tree represents a set.

• In a tree, each set member points only to its
parent. The root of each tree contains the
representative of the set and is its own parent.

• For many sets, we have a disjoint-set forest.

Data Structures and Programming
Techniques

38

Example: the Sets {b, c, e, h} and
{d, f, g}

Data Structures and Programming
Techniques

39

c

h e

b

f

d

g

The representatives of the two sets are c and f.

Implementing MAKE-SET,
FIND-SET and UNION

• A MAKE-SET operation simply creates a tree
with just one node.

• A FIND-SET operation can be implemented by
chasing parent pointers until we find the root
of the tree. The nodes visited on this path
towards the root constitute the find-path.

• A UNION operation can be implemented by
making the root of one tree to point to the
root of the other.

Data Structures and Programming
Techniques

40

Example: the UNION of Sets {b, c, e, h}
and {d, f, g}

Data Structures and Programming
Techniques

41

c

h e

b

f

d

g

Implementation in C

• The disjoint-forests data structure can easily be implemented by
changing the meaning of the elements of array id in our earlier C
implementation. Now each id[i] represents the element i of a
set and points to another element of that set. These pointers give
the paths towards the root of the tree. The root element points to
itself.

• The program on the next slide illustrates this functionality. Note
that after we have found the roots of the two sets, the UNION
operation is simply implemented by the assignment statement
id[i]=j. In other words, element j becomes the representative
of the united sets and the root of the new tree.

• This algorithm is called quick-union.
• The implementation of the FIND-SET(i) operation is similar: we just

follow pointers starting at id[i] until we find the root of the tree.

Data Structures and Programming
Techniques

42

Implementation in C (cont’d)

#include <stdio.h>

#define N 10000

main()

{ int i, j, p, q, t, id[N];

for (i = 0; i < N; i++) id[i] = i;

while (scanf("%d %d", &p, &q) == 2)

{

for (i = p; i != id[i]; i = id[i]) ;

for (j = q; j != id[j]; j = id[j]) ;

if (i == j) continue;

id[i] = j;

printf("%d %d\n", p, q);

}

}

Data Structures and Programming
Techniques

43

Example

p q id[0] id[1] id[2] id[3] id[4] id[5] id[6]

0 1 2 3 4 5 6

0 2 2 1 2 3 4 5 6

5 6 2 1 2 3 4 6 6

3 4 2 1 2 4 4 6 6

0 4 2 1 4 4 4 6 6

0 3 2 1 4 4 4 6 6

0 5 2 1 4 4 6 6 6

Data Structures and Programming
Techniques

44

The Example By Showing the Trees

Data Structures and Programming
Techniques

45

10 5 62 3 4

This is the initial forest. We do not show the self-loops.

Example (cont’d)

Data Structures and Programming
Techniques

46

1

0

5 62 3 4

After processing the pair (0,2).

Example (cont’d)

Data Structures and Programming
Techniques

47

1

0 5

62 3 4

After processing the pair (5,6).

Example (cont’d)

Data Structures and Programming
Techniques

48

1

0 5

62

3

4

After processing the pair (3,4).

Example (cont’d)

Data Structures and Programming
Techniques

49

1

0

5

6

2 3

4

After processing the pair (0,4).

Example (cont’d)

Data Structures and Programming
Techniques

50

1

0

5

6

2 3

4

After processing the pair (0,3), there is no change in the forest.

Example (cont’d)

Data Structures and Programming
Techniques

51

1

0

5

6

2 3

4

After processing the pair (0,5).

Discussion

• The quick-union algorithm would seem to be
faster than the quick-find algorithm, because it
does not have to go through the entire array for
each input pair; but how much faster is it?

• By running empirical studies or studying the
amortized time complexity of the two algorithms
we can show that quick-union is more efficient.

• But we cannot guarantee that quick-union will
be substantially faster than quick-find in the
worst-case because the input data could conspire
to make the FIND-SET operation slow.

Data Structures and Programming
Techniques

52

Proposition

• For 𝑚 > 𝑛, the quick-union algorithm could

take more than
𝑚𝑛

2
instructions to solve a

disjoint set problem with 𝑚 pairs of 𝑛 objects.

• Proof?

Data Structures and Programming
Techniques

53

Proof

• Suppose that the input pairs come in the order (1,2), then
(2,3), then (3,4) and so forth.

• After 𝑛 − 1 such pairs, we have 𝑛 objects all in the same
set, and the tree that is formed by the quick-union
algorithm is a chain, with 𝑛 pointing to 𝑛 − 1, which points
to 𝑛 − 2, which points to 𝑛 − 3, and so forth.

• To execute the FIND operation for object 𝑛, the program has
to follow 𝑛 − 1 pointers.

• Thus the average number of pointers followed for the first
𝑛 pairs is

0 + 1 +⋯+ 𝑛 − 1

𝑛
=
𝑛 − 1

2
.

Data Structures and Programming
Techniques

54

Proof (cont’d)

• Now suppose that the remaining pairs all
connect 𝑛 to some other object.

• The FIND-SET operation for each of these pairs
involves at least (𝑛 − 1) pointers.

• The grand total for 𝑚 FIND-SET operations for
this sequence of input pairs is certainly

greater than
𝑚𝑛

2
.

Data Structures and Programming
Techniques

55

The Weighted Quick-Union Algorithm

• We can implement a weighted version of the
UNION operation by keeping track of the size of
the two trees and making the root of the
smaller tree point to the root of the larger.

• The code on the next slide implements this
functionality by making use of an array
sz[N] (for size).

Data Structures and Programming
Techniques

56

Implementation in C

#include <stdio.h>

#define N 10000

main()

{ int i, j, p, q, id[N], sz[N];

for (i = 0; i < N; i++)

{ id[i] = i; sz[i] = 1; }

while (scanf("%d %d", &p, &q) == 2)

{

for (i = p; i != id[i]; i = id[i]) ;

for (j = q; j != id[j]; j = id[j]) ;

if (i == j) continue;

if (sz[i] < sz[j])

{ id[i] = j; sz[j] += sz[i]; }

else { id[j] = i; sz[i] += sz[j]; }

printf("%d %d\n", p, q);

}

}

Data Structures and Programming
Techniques

57

Example

Data Structures and Programming
Techniques

58

10 5 62 3 4

This is the initial forest. We do not show the self-loops.

Example (cont’d)

Data Structures and Programming
Techniques

59

1

0

5 62 3 4

After processing the pair (0,2).

Example (cont’d)

Data Structures and Programming
Techniques

60

1

0 5

62 3 4

After processing the pair (5,6).

Example (cont’d)

Data Structures and Programming
Techniques

61

1

0 5

62

3

4

After processing the pair (3,4).

Example (cont’d)

Data Structures and Programming
Techniques

62

1

0

5

6

2 3

4

After processing the pair (0,4).

Example (cont’d)

Data Structures and Programming
Techniques

63

1

0

5

6

2 3

4

After processing the pair (0,3), there is no change in the forest.

Example (cont’d)

Data Structures and Programming
Techniques

64

1

0 5

62 3

4

After processing the pair (0,5). The shorter tree is now joined to the taller one
and the paths in the resulting tree are shorter.

Proposition

• The weighted quick-union algorithm follows at
most 2 log 𝑛 pointers to determine whether
two of 𝑛 objects are connected.

• Proof?

Data Structures and Programming
Techniques

65

Proof

• We can prove that the UNION operation preserves the
property that the number of pointers followed from
any node to the root in a set of 𝑘 objects is no greater
than log 𝑘. The reason for this is as follows.

• The property holds at the beginning of the algorithm.

• When we combine a set of 𝑖 nodes with a set of 𝑗
nodes with 𝑖 ≤ 𝑗, we increase the number of pointers
that must be followed in the smaller set by 1, but they
are now in a set of size 𝑖 + 𝑗, so the property is
preserved because

1 + log 𝑖 = log(𝑖 + 𝑖) ≤ log(𝑖 + 𝑗) .

Data Structures and Programming
Techniques

66

Discussion

• The practical implication of the previous proposition is that the
weighted quick-union algorithm uses 𝑶(𝒎 𝐥𝐨𝐠𝒏) instructions to
process 𝑚 pairs of 𝑛 objects.

• This result is in stark contrast to our finding that quick-find always
(and quick union sometimes) uses at least

𝑚𝑛

2
instructions.

• The conclusion is that, with weighted quick-union, we can
guarantee that we can solve huge practical problems in a
reasonable amount of time.

• Empirical studies show that the weighted quick-union algorithm can
solve practical problems in time linear in 𝒎. However, it has been
shown that the problem cannot be solved in time linear in 𝑚 in the
worst case. The best we can hope for is 𝑂(𝑚 log 𝑛).

Data Structures and Programming
Techniques

67

The Path Compression Heuristic

• We can extend the weighted quick-union
algorithm with a second heuristic, called path
compression (συμπίεση μονοπατιού), which is
also simple and very effective.

• This heuristic is used during FIND-SET operations
to make each node on the find-path point
directly to the root.

• In this way, trees with small height are
constructed.

• Path compression does not change any weights.

Data Structures and Programming
Techniques

68

The Path Compression Heuristic
Graphically

Data Structures and Programming
Techniques

69

f

e

d

c

b

The Path Compression Heuristic
Graphically (cont’d)

Data Structures and Programming
Techniques

70

edcb

f

Path Compression by Halving

• An easy way to implement path compression
is by halving the length of paths on the way
up the tree by taking two links at a time, and
setting the bottom one point to the same
node as the top one, as shown in the next
figure.

Data Structures and Programming
Techniques

71

Example (cont’d)

Data Structures and Programming
Techniques

72

1

3

7

6

2

5

4 7

1

6

54

32

When traversing the tree on the left
from node 7 up to node 1, we can
halve its height as shown on the right.

Path Compression by Halving (cont’d)

• The new algorithm is easily implemented by
replacing the for loops of the weighted
quick-union program as shown on the next
slide.

Data Structures and Programming
Techniques

73

Implementation in C

#include <stdio.h>

#define N 10000

main()

{ int i, j, p, q, id[N], sz[N];

for (i = 0; i < N; i++)

{ id[i] = i; sz[i] = 1; }

while (scanf("%d %d", &p, &q) == 2)

{

for (i = p; i != id[i]; i = id[i])

id[i]=id[id[i]];

for (j = q; j != id[j]; j = id[j])

id[j]=id[id[j]];

if (i == j) continue;

if (sz[i] < sz[j])

{ id[i] = j; sz[j] += sz[i]; }

else { id[j] = i; sz[i] += sz[j]; }

printf("%d %d\n", p, q);

}

}

Data Structures and Programming
Techniques

74

Readings

• Robert Sedgewick. Αλγόριθμοι σε C. 3η

Αμερικανική Έκδοση. Εκδόσεις Κλειδάριθμος.

– Κεφάλαιο 1

• T.H. Cormen, C. E. Leiserson and R. L. Rivest.
Introduction to Algorithms. MIT Press.

– Chapter 22

Data Structures and Programming
Techniques

75

