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Dynamic Sets

• Sets are fundamental for mathematics but 
also for computer science.

• In computer science, we usually study 
dynamic sets i.e., sets that can grow, shrink or 
otherwise change over time.

• The data structures we have presented so far 
in this course offer us ways to represent finite, 
dynamic sets and manipulate them on a 
computer.
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Dynamic Sets and Symbol Tables

• Many of the data structures we have so far 
presented for symbol tables can be used to 
implement a dynamic set (e.g., a linked list, a 
hash table, a (2,4) tree etc.).
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Disjoint Sets

• Some applications involve grouping 𝑛 distinct 
elements into a collection of disjoint sets
(ξένα σύνολα).

• Important operations in this case are to 
construct a set, to find which set a given 
element belongs to, and to unite two sets.
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Definitions

• A disjoint-set data structure maintains a 
collection 𝑆 = { 𝑆1, 𝑆2, ⋯ , 𝑆𝑛} of disjoint 
dynamic sets.

• Each set is identified by a representative 
(αντιπρόσωπο), which is some member of the 
set.

• The disjoint sets might form a partition
(διαμέριση) of a universe set 𝑈 (i.e., their 
union is the set 𝑈).
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Definitions (cont’d)

• The disjoint-set data structure supports the following 
operations:
– MAKE-SET(𝒙): It creates a new set whose only member (and thus 

representative) is pointed to by 𝑥. Since the sets are disjoint, we 
require that 𝑥 not already be in any of the existing sets.

– UNION(𝒙, 𝒚): It unites the dynamic sets that contain 𝑥 and 𝑦, say 
𝑆𝑥 and 𝑆𝑦, into a new set that is the union of these two sets. 
One of the 𝑆𝑥 and 𝑆𝑦 give its name to the new set and the other 
set is “destroyed” by removing it from the collection 𝑆. The two 
sets are assumed to be disjoint prior to the operation. The 
representative of the resulting set is some member of 𝑆𝑥 ∪ 𝑆𝑦
(usually the representative of the set that gave its name to the 
union).

– FIND-SET(𝒙) returns a pointer to the representative of the unique 
set containing 𝑥.
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Determining the Connected 
Components of an Undirected Graph

• One of the many applications of disjoint-set data 
structures is determining the connected 
components (συνεκτικές συνιστώσες) of an 
undirected graph.

• The implementation based on disjoint-sets that 
we will present here is appropriate when the 
edges of the graph are not static e.g., when edges 
are added dynamically and we need to maintain 
the connected components as each edge is 
added.
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Example Graph
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Computing the Connected 
Components of an Undirected Graph

• The following procedure CONNECTED-COMPONENTS
uses the disjoint-set operations to compute the 
connected components of an undirected graph.

CONNECTED-COMPONENTS(𝐺)
for each vertex 𝑣 ∈ 𝑉 𝐺

do MAKE-SET(𝑣)
for each edge 𝑢, 𝑣 ∈ 𝐸 𝐺

do if FIND-SET(𝑢)≠FIND-SET(𝑣)
then UNION(𝑢, 𝑣)
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Computing the Connected 
Components (cont’d)

• Once CONNECTED-COMPONENTS has been run as a 
preprocessing step, the procedure SAME-
COMPONENT given below answers queries about 
whether two vertices are in the same connected 
component.

SAME-COMPONENT(𝑢, 𝑣)
if FIND-SET(𝑢)=FIND-SET(𝑣)

then return TRUE
else return FALSE
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Example Graph
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The Collection of Disjoint Sets After 
Each Edge is Processed

Edge 
processed

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕 𝑺𝟖 𝑺𝟗 𝑺𝟏𝟎

initial sets {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b,d) {a} {b,d} {c} {e} {f} {g} {h} {i} {j}

(e,g) {a} {b,d} {c} {e,g} {f} {h} {i} {j}

(a,c) {a,c} {b,d} {e,g} {f} {h} {i} {j}

(h,i) {a,c} {b,d} {e,g} {f} {h,i} {j}

(a,b) {a,b,c,d} {e,g} {f} {h,i} {j}

(e,f) {a,b,c,d} {e,f,g} {h,i} {j}

(b,c) {a,b,c,d} {e,f,g} {h,i} {j}
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Minimum Spanning Trees

• Another application of the disjoint set 
operations that we will see is Kruskal’s 
algorithm for computing the minimum 
spanning tree of a graph.

• We will see this algorithm in the next lecture.
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Maintaining Equivalence Relations

• Another application of disjoint-set data 
structures is to maintain equivalence 
relations.

• Definition. An equivalence relation on a set 𝑆
is relation ≡ with the following properties:
– Reflexivity: for all 𝑎 ∈ 𝑆, we have 𝑎 ≡ 𝑎.

– Symmetry: for all 𝑎, 𝑏 ∈ 𝑆, if 𝑎 ≡ 𝑏 then 𝑏 ≡ 𝑎.

– Transitivity: for all 𝑎, 𝑏, 𝑐 ∈ 𝑆, if 𝑎 ≡ 𝑏 and 𝑏 ≡
𝑐 then 𝑎 ≡ 𝑐 .
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Examples of Equivalence Relations

• Equality in some set 𝑆.

• Connectivity of vertices in an undirected 
graph.
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Examples of Equivalence Relations 
(cont’d)

• Equivalent type definitions in programming languages. For 
example, consider the following type definitions in C:
struct A {

int a;

int b;

};

typedef A B;

typedef A C;

typedef A D;

• The types A, B, C and D are equivalent in the sense 
that variables of one type can be assigned to variables of 
the other types without requiring any casting.
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Equivalent Classes

• If a set 𝑆 has an equivalence relation defined 
on it, then the set 𝑆 can be partitioned into 
disjoint subsets 𝑆1, 𝑆2, ⋯ , 𝑆𝑛 called 
equivalence classes whose union is 𝑆.

• Each subset 𝑆𝑖 consists of equivalent members 
of 𝑆. That is, 𝑎 ≡ 𝑏 for all 𝑎 and 𝑏 in 𝑆𝑖, and 
𝑎 ≢ 𝑏 if 𝑎 and 𝑏 are in different subsets.
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Example

• Let us consider the set 𝑆 = {0,1, 2, … , 6}.

• Let us also consider an equivalence relation ≡
on 𝑆 defined by the following equivalences:

0 ≡ 2, 5 ≡ 6, 3 ≡ 4, 0 ≡ 4, 0 ≡ 3

• Note that the relation 0 ≡ 3 follows from the 
others given the definition of an equivalence 
relation.
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The Equivalence Problem

• The equivalence problem can be formulated 
as follows.

• We are given a set 𝑆 and a sequence of 
statements of the form 𝑎 ≡ 𝑏.

• We are to process the statements in order in 
such a way that, at any time, we are able to
determine in which equivalence class a given 
element of 𝑆 belongs.
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The Equivalence Problem (cont’d)

• We can solve the equivalence problem by 
starting with each element in a different 
named set. 

• When we process a statement 𝑎 ≡ 𝑏, we call 
FIND-SET(𝑎) and FIND-SET(𝑏).

• If these two calls return different sets then we 
call UNION to unite these sets. If they return 
the same set then this statement follows from 
the other statements and can be discarded.
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Example (cont’d)

• We start with each element of 𝑆 in a set:
0 1 2 3 4 5 6

• As the given equivalence relations are processed, 
these sets are modified as follows:
0 ≡ 2 0, 2 1 3 4 5 6
5 ≡ 6 0, 2 1 3 4 5, 6
3 ≡ 4 0, 2 1 3, 4 5, 6
0 ≡ 4 0, 2, 3, 4 1 5, 6
0 ≡ 3 follows from the other statements and is 

discarded
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Example (cont’d)

• Therefore, the equivalent classes of 𝑆 are the 
subsets 0, 2, 3, 4 , 1 and {5, 6}.
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Implementation in C

• Let us assume that the sets will have positive integers in the range 0 to N-
1 as their members.

• The simplest way to implement in C the disjoint sets data structure is to 
use an array id[N] of integers that take values in the range 0 to N-1. 
This array will be used to keep track of the representative of each set but 
also the members of each set.

• Initially, we set id[i]=i, for each i between 0 and N-1. This is 
equivalent to N MAKE-SET operations that create the initial versions of the 
sets.

• To implement the UNION operation for the sets that contain integers p and 
q, we scan the array id and change all the array elements that have the 
value p to have the value q. In other words, q becomes the representative 
of the union of the two sets.

• The implementation of the FIND-SET(p) simply returns the value of id[p].
• This algorithm is called quick-find.
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Implementation in C (cont’d)

• The program on the next slide initializes the 
array id, and then reads pairs of integers 
(p,q) and performs the operation 
UNION(p,q) if p and q are not in the same set 
yet.

• The program is an implementation of the 
equivalence problem defined earlier. 
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Implementation in C (cont’d)

#include <stdio.h>

#define N 10000

main()

{ int i, p, q, t, id[N];

for (i = 0; i < N; i++) id[i] = i;

while (scanf("%d %d", &p, &q) == 2)

{

if (id[p] == id[q]) continue;

for (t = id[p], i = 0; i < N; i++)

if (id[i] == t) id[i] = id[q];

printf("%d %d\n", p, q);

}

}

Data Structures and Programming 
Techniques

25



Example

p q id[0] id[1] id[2] id[3] id[4] id[5] id[6]

0 1 2 3 4 5 6

0 2 2 1 2 3 4 5 6

5 6 2 1 2 3 4 6 6

3 4 2 1 2 4 4 6 6

0 4 4 1 4 4 4 6 6

0 3 4 1 4 4 4 6 6
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Complexity Parameters for the 
Disjoint-Set Data Structures

• We will analyze the running time of our data 
structures in terms of two parameters:

– 𝑛, the number of objects, and

–𝑚, the number of pairs of input equivalent objects 
to be processed.
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Proposition

• The quick-find algorithm has time complexity 
𝑂(𝑛𝑚) where 𝑛 is the number of objects and 
𝑚 is the number of input pairs of objects.

• Proof?
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Proof

• For each of the 𝑚 input pairs, we iterate the 
for loop 𝑛 times. 
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Linked-List Representation of Disjoint 
Sets

• Another way to implement a disjoint-set data 
structure is to represent each set by a linked list.

• The first object in each linked list serves as its 
set’s representative. The remaining objects can 
appear in the list in any order.

• Each object in the linked list contains a set 
member, a pointer to the object containing the 
next set member, and a pointer back to the 
representative.
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The Structure of Each List Object
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Example: the Sets {c, h, e, b} and 
{f, g, d}
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Implementation of MAKE-SET and 
FIND-SET

• With the linked-list representation, both 
MAKE-SET and FIND-SET are easy.

• To carry out MAKE-SET(𝑥), we create a new 
linked list which has one object with set 
element 𝑥.

• To carry out, FIND-SET(𝑥), we just return the 
pointer from 𝑥 back to the representative.
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Implementation of UNION

• To perform UNION(𝑥, 𝑦), we can append 𝑥’s list 
onto the end of 𝑦’s list.

• The representative of the new set is the 
element that was originally the representative 
of the set containing 𝑦.

• We should also update the pointer to the 
representative for each object originally in 𝑥’s 
list.
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The Weighted Union Heuristic

• In the above implementation of the UNION operation
we may be appending a longer list onto a shorter list, 
and we must update the pointer to the representative 
of each member of the longer list.

• If each representative also includes the length of the 
list then we can always append the smaller list onto 
the longer, with ties broken arbitrarily. This is called the 
weighted union heuristic.

• The word heuristic is used in Computer Science to 
mean “a rule of thumb” that allows us to improve an 
algorithm.
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Implementation in C

• The implementation in C for the case where 
sets are represented by linked lists is left as an 
exercise.
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Complexity of Operations for the 
Linked List Representation

• MAKE-SET and FIND-SET take 𝑂(1) time.
• UNION(𝑥, 𝑦) takes time 𝑂 𝑥 + 𝑦 where 𝑥 and 𝑦

denote the cardinalities of the sets that contain 𝑥 and 𝑦. 
We need 𝑂( 𝑦 ) time to reach the last object in 𝑦’s list to 
make it point to the first object in 𝑥’s list.  We also need 
𝑂( 𝑥 ) time to update all pointers to the representative in 
𝑥’s list. 

• If we keep a pointer to the last object in the list in each 
representative then we do not need to scan 𝑦’s list, and we 
only need 𝑂( 𝑥 ) time to update all pointers to the 
representative in 𝑥’s list. 

• In the worst case, the complexity of UNION is 𝑂(𝑛) since the 
cardinality of each set can be at most 𝑛. 
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Disjoint-Set Forests

• There is another interesting implementation of 
disjoint sets in which we represent sets by 
directed rooted trees.

• Each node of a tree represents one set member
and each tree represents a set.

• In a tree, each set member points only to its 
parent. The root of each tree contains the 
representative of the set and is its own parent.

• For many sets, we have a disjoint-set forest.
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Example: the Sets {b, c, e, h} and
{d, f, g}
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Implementing MAKE-SET,
FIND-SET and UNION

• A MAKE-SET operation simply creates a tree 
with just one node.

• A FIND-SET operation can be implemented by 
chasing parent pointers until we find the root 
of the tree. The nodes visited on this path 
towards the root constitute the find-path.

• A UNION operation can be implemented by 
making the root of one tree to point to the 
root of the other.
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Example: the UNION of Sets {b, c, e, h} 
and {d, f, g}
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Implementation in C

• The disjoint-forests data structure can easily be implemented by 
changing the meaning of the elements of array id in our earlier C 
implementation. Now each id[i] represents the element i of a 
set and points to another element of that set. These pointers give 
the paths towards the root of the tree. The root element points to 
itself.

• The program on the next slide illustrates this functionality. Note 
that after we have found the roots of the two sets, the UNION
operation is simply implemented by the assignment statement 
id[i]=j. In other words, element j becomes the representative 
of the united sets and the root of the new tree.

• This algorithm is called quick-union.
• The implementation of the FIND-SET(i) operation is similar: we just 

follow pointers starting at id[i] until we find the root of the tree.
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Implementation in C (cont’d)

#include <stdio.h>

#define N 10000

main()

{ int i, j, p, q, t, id[N];

for (i = 0; i < N; i++) id[i] = i;

while (scanf("%d %d", &p, &q) == 2)

{

for (i = p; i != id[i]; i = id[i]) ;

for (j = q; j != id[j]; j = id[j]) ;

if (i == j) continue;

id[i] = j;

printf("%d %d\n", p, q);

}

}
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Example

p q id[0] id[1] id[2] id[3] id[4] id[5] id[6]

0 1 2 3 4 5 6

0 2 2 1 2 3 4 5 6

5 6 2 1 2 3 4 6 6

3 4 2 1 2 4 4 6 6

0 4 2 1 4 4 4 6 6

0 3 2 1 4 4 4 6 6

0 5 2 1 4 4 6 6 6
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The Example By Showing the Trees
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Example (cont’d)
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Example (cont’d)
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Example (cont’d)
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Example (cont’d)
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Example (cont’d)
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Example (cont’d)
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Discussion

• The quick-union algorithm would seem to be 
faster than the quick-find algorithm, because it 
does not have to go through the entire array for 
each input pair; but how much faster is it?

• By running empirical studies or studying the 
amortized time complexity of the two algorithms 
we can show that quick-union is more efficient.

• But we cannot guarantee that quick-union will 
be substantially faster than quick-find in the 
worst-case because the input data could conspire 
to make the FIND-SET operation slow.
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Proposition

• For 𝑚 > 𝑛, the quick-union algorithm could 

take more than 
𝑚𝑛

2
instructions to solve a 

disjoint set problem with 𝑚 pairs of 𝑛 objects.

• Proof?
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Proof

• Suppose that the input pairs come in the order (1,2), then 
(2,3), then (3,4) and so forth.

• After 𝑛 − 1 such pairs, we have 𝑛 objects all in the same 
set, and the tree that is formed by the quick-union 
algorithm is a chain, with 𝑛 pointing to 𝑛 − 1, which points 
to 𝑛 − 2, which points to 𝑛 − 3, and so forth. 

• To execute the FIND operation for object 𝑛, the program has 
to follow 𝑛 − 1 pointers. 

• Thus the average number of pointers followed for the first 
𝑛 pairs is

0 + 1 +⋯+ 𝑛 − 1

𝑛
=
𝑛 − 1

2
.
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Proof (cont’d)

• Now suppose that the remaining pairs all 
connect 𝑛 to some other object. 

• The FIND-SET operation for each of these pairs 
involves at least (𝑛 − 1) pointers. 

• The grand total for 𝑚 FIND-SET operations for 
this sequence of input pairs is certainly 

greater than 
𝑚𝑛

2
.
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The Weighted Quick-Union Algorithm

• We can implement a weighted version of the 
UNION operation by keeping track of the size of 
the two trees and making the root of the 
smaller tree point to the root of the larger.

• The code on the next slide implements this 
functionality by making use of an array 
sz[N] (for size).
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Implementation in C

#include <stdio.h>

#define N 10000

main()

{ int i, j, p, q, id[N], sz[N];

for (i = 0; i < N; i++)

{ id[i] = i; sz[i] = 1; }

while (scanf("%d %d", &p, &q) == 2)

{

for (i = p; i != id[i]; i = id[i]) ;

for (j = q; j != id[j]; j = id[j]) ;

if (i == j) continue;

if (sz[i] < sz[j])

{ id[i] = j; sz[j] += sz[i]; }

else { id[j] = i; sz[i] += sz[j]; }

printf("%d %d\n", p, q);

}

}
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Example
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This is the initial forest. We do not show the self-loops.



Example (cont’d)
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Example (cont’d)
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Example (cont’d)
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After processing the pair (3,4).



Example (cont’d)
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Example (cont’d)
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After processing the pair (0,3), there is no change in the forest.



Example (cont’d)
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and the paths in the resulting tree are shorter.



Proposition

• The weighted quick-union algorithm follows at 
most 2 log 𝑛 pointers to determine whether 
two of 𝑛 objects are connected.

• Proof?
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Proof

• We can prove that the UNION operation preserves the 
property that the number of pointers followed from 
any node to the root in a set of 𝑘 objects is no greater 
than log 𝑘. The reason for this is as follows.

• The property holds at the beginning of the algorithm.

• When we combine a set of 𝑖 nodes with a set of 𝑗
nodes with 𝑖 ≤ 𝑗, we increase the number of pointers 
that must be followed in the smaller set by 1, but they 
are now in a set of size 𝑖 + 𝑗, so the property is 
preserved because

1 + log 𝑖 = log(𝑖 + 𝑖) ≤ log(𝑖 + 𝑗) .
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Discussion

• The practical implication of the previous proposition is that the 
weighted quick-union algorithm uses  𝑶(𝒎 𝐥𝐨𝐠𝒏) instructions to 
process 𝑚 pairs of 𝑛 objects.

• This result is in stark contrast to our finding that quick-find always 
(and quick union sometimes) uses at least 

𝑚𝑛

2
instructions.

• The conclusion is that, with weighted quick-union, we can 
guarantee that we can solve huge practical problems in a 
reasonable amount of time.

• Empirical studies show that the weighted quick-union algorithm can 
solve practical problems in time linear in 𝒎. However, it has been 
shown that the problem cannot be solved in time linear in 𝑚 in the 
worst case. The best we can hope for is 𝑂(𝑚 log 𝑛).
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The Path Compression Heuristic

• We can extend the weighted quick-union 
algorithm with a second heuristic, called path 
compression (συμπίεση μονοπατιού), which is 
also simple and very effective.

• This heuristic is used during FIND-SET operations 
to make each node on the find-path point 
directly to the root.

• In this way, trees with small height are 
constructed.

• Path compression does not change any weights.
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The Path Compression Heuristic 
Graphically
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The Path Compression Heuristic 
Graphically (cont’d)
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Path Compression by Halving

• An easy way to implement path compression 
is by halving the length of paths on the way 
up the tree by taking two links at a time, and 
setting the bottom one point to the same 
node as the top one, as shown in the next 
figure.
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Example (cont’d)
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When traversing the tree on the left 
from node 7 up to node 1, we can 
halve its height as shown on the right.



Path Compression by Halving (cont’d)

• The new algorithm is easily implemented by 
replacing the for loops of the weighted 
quick-union program as shown on the next 
slide.
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Implementation in C

#include <stdio.h>

#define N 10000

main()

{ int i, j, p, q, id[N], sz[N];

for (i = 0; i < N; i++)

{ id[i] = i; sz[i] = 1; }

while (scanf("%d %d", &p, &q) == 2)

{

for (i = p; i != id[i]; i = id[i]) 

id[i]=id[id[i]];

for (j = q; j != id[j]; j = id[j]) 

id[j]=id[id[j]];

if (i == j) continue;

if (sz[i] < sz[j])

{ id[i] = j; sz[j] += sz[i]; }

else { id[j] = i; sz[i] += sz[j]; }

printf("%d %d\n", p, q);

}

}
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Readings

• Robert Sedgewick. Αλγόριθμοι σε C. 3η

Αμερικανική Έκδοση. Εκδόσεις Κλειδάριθμος.

– Κεφάλαιο 1

• T.H. Cormen, C. E. Leiserson and R. L. Rivest. 
Introduction to Algorithms. MIT Press.

– Chapter 22
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